Our group specializes in theoretical and experimental studies of exciting and innovative research fields such as machine learning, extracellular and intracellular stimulations and recordings of neurons in-vitro, synchronization of neural networks and chaotic lasers, physical random number generators and advanced protocols for secure communication.


Recent Publications


Attempting to imitate the brain’s functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning (ML). Here, using neuronal cultures, we demonstrate that increased training frequency accelerates the neuronal adaptation processes. This mechanism was implemented on artificial neural networks, where a local learning step-size increases for coherent consecutive learning steps, and tested on a simple dataset of handwritten digits, MNIST. Based on our on-line learning results with a few handwriting examples, success rates for brain-inspired algorithms substantially outperform the commonly used ML algorithms. We speculate this emerging bridge from slow brain function to ML will promote ultrafast decision making under limited examples, which is the reality in many aspects of human activity, robotic control, and network optimization.


Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increased with the number of hidden layers. For the largest dataset, the obtained test error was estimated to be in the proximity of state-of-the-art algorithms for large epoch numbers. Power-law scaling assists with key challenges found in current artificial intelligence applications and facilitates an a priori dataset size estimation to achieve a desired test accuracy. It establishes a benchmark for measuring training complexity and a quantitative hierarchy of machine learning tasks and algorithms.

bio learning.JPG

Recently, deep learning algorithms have outperformed human experts in various tasks across several domains; however, their characteristics are distant from current knowledge of neuroscience. The simulation results of biological learning algorithms presented herein outperform state-of-the-art optimal learning curves in supervised learning of feedforward networks. The biological learning algorithms comprise asynchronous input signals with decaying input summation, weights adaptation, and multiple outputs for an input signal. In particular, the generalization error for such biological perceptrons decreases rapidly with increasing number of examples, and it is independent of the size of the input. This is achieved using either synaptic learning, or solely through dendritic adaptation with a mechanism of swinging between reflecting boundaries, without learning steps. The proposed biological learning algorithms outperform the optimal scaling of the learning curve in a traditional perceptron. It also results in a considerable robustness to disparity between weights of two networks with very similar outputs in biological supervised learning scenarios. The simulation results indicate the potency of neurobiological mechanisms and open opportunities for developing a superior class of deep learning algorithms.